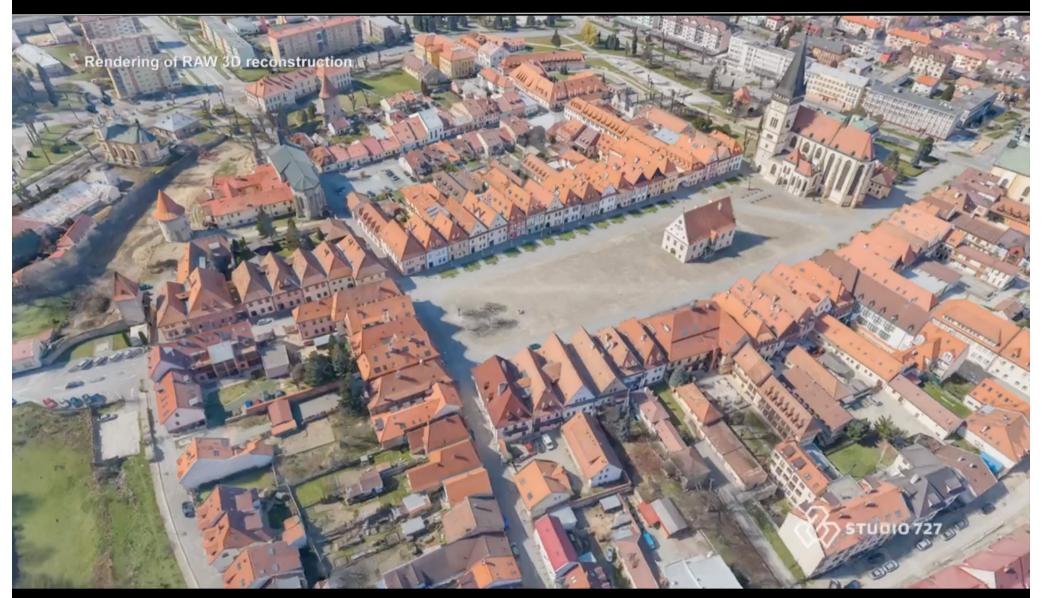
Minimal Problems in Computer Vision Tomas Pajdla

Czech Technical University in Prague


in collaboration with

Zuzana Kukelova, Martin Bujnak, Jan Heller, Cenek Albl, Tanja Schilling, Di Meng, Pavel Trutman

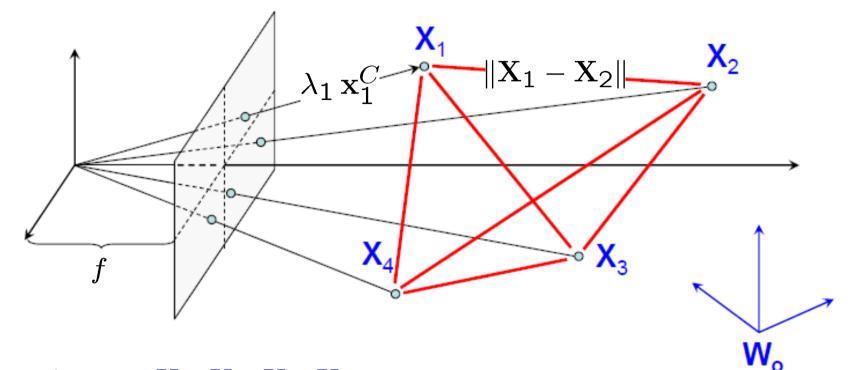
Andrew Fitzgibbon, Viktor Larsson, Kalle Astrom, Magnus Oskarsson, Kalle Astrom, Alge Wallis, Martin Byrod, Klas Josephson

Joe Kileel, Bernd Sturmfels

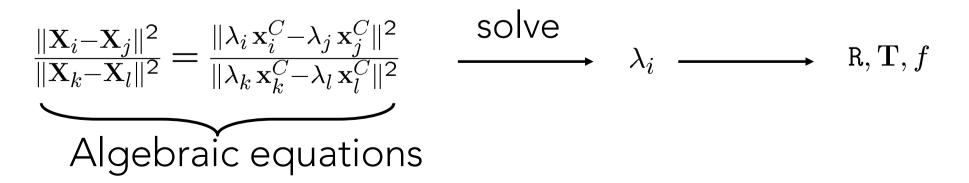
3D Reconstruction from Photographs

Capturing Reality (capturingreality.com)

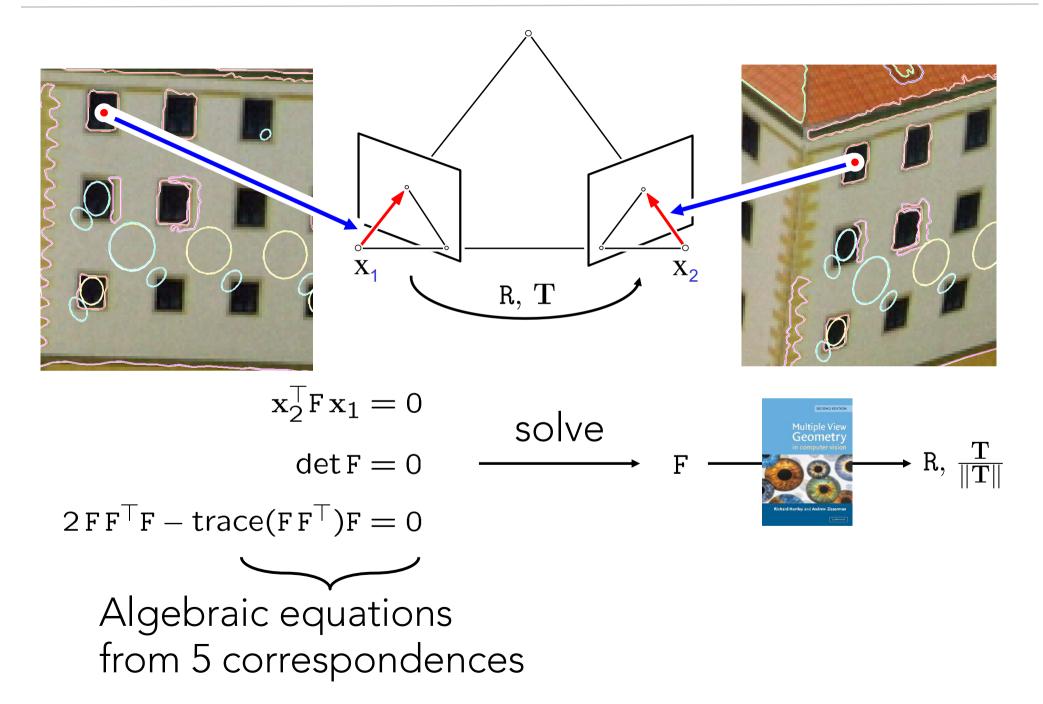
Camera & structure computation essential ...

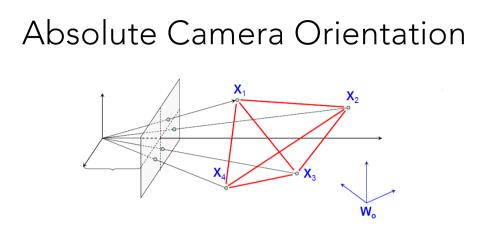

3D reconstruction

Solving "Minimal Problems"

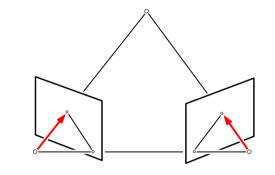

by

Algebraic Geometry


Minimal problem: Absolute Camera Orientation


- known $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3, \mathbf{X}_4$
- unknown $\mathbf{R}, \mathbf{T}, f$

Minimal problem: Relative Camera Orientation



Long history of Minimal Problems

1841 J. A. Grunert

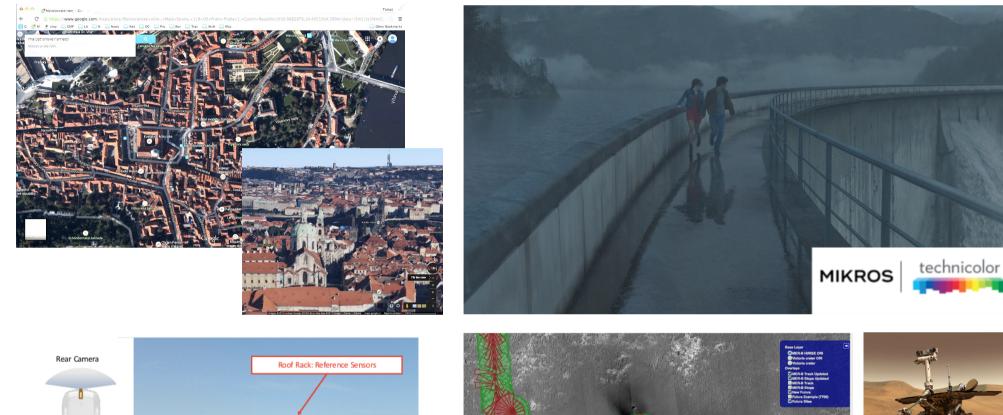
Relative Camera Orientation

1913 E. Kruppa

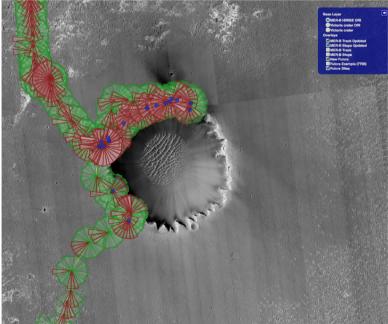
1981 M. A. Fischler and R. C. Bolles 1981 H. Longuet-Higgins

2013 Z. Kukelova et al.

2004 D. Nister


- many papers
- many applications

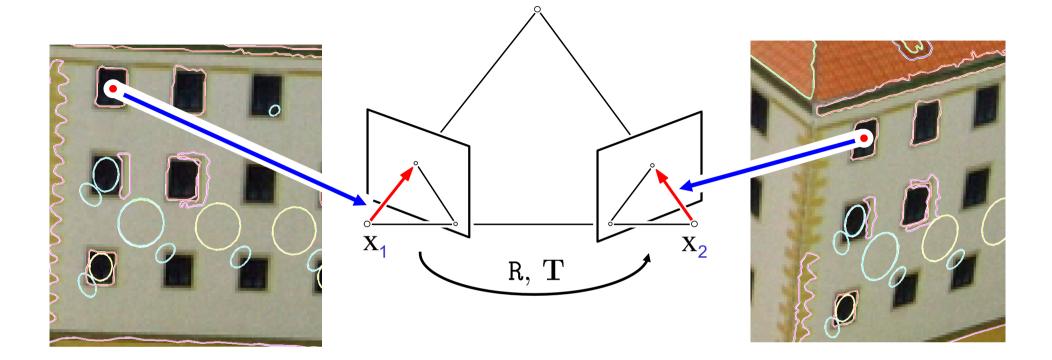
Minimal problems list (cmp.felk.cvut.cz/minimal)


-> C C cmp.fe ←

G	ි cmp.felk.cvut.cz/mini/	
Mi	imal Problems in Computer Vision	
This	ge provides a list of papers, software, data, and evaluations for solving minimal problems in computer vision, which is concerned with finding parameters of (geometrical) models from as small (minimal) data sets by solving systems of algebraic na.	
Pleas	send links to papers that should be listed here to Tomas Pajdla (pajdla@cmp.felk.cvut.cz) or Zuzana Kukelova (zukuke@microsoft.com).	
	• Unknown internal orientations documentations	
len		
Car A C	int Algorithm for Relative Pose Estimation of a Calibrated ra with a Known Relative Rotation Angle umn-Pivoting Based Strategy for Monomial Ordering in rical Gröbner Basis Calculations	
Sel	nplete Characterization and Solution to the Microphone Positi salibration Problem	
	eral solution to the P4P problem for camera with unknown for	
	Image provides a first operative discussion computer Vision Brance provides a first operative discussion computer Vision computer Vision Brance provides a first operative discussion computer Vision comp	
	THE Autor Value Value Value Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance Instance Insterior Instance <t< td=""><td></td></t<>	
	A-Rest Registering Name A KCV 2008, NMM, Solver 200 (m) Name A A-Rest Registering Name A Registering	
	A Consider Marchander Bullower Annon Annon Bullower Annon Anno Annon Annon Annon Annon Annon Annon Annon Annon Annon Annon Annon	
	Ng-mg Adv. examin 10	

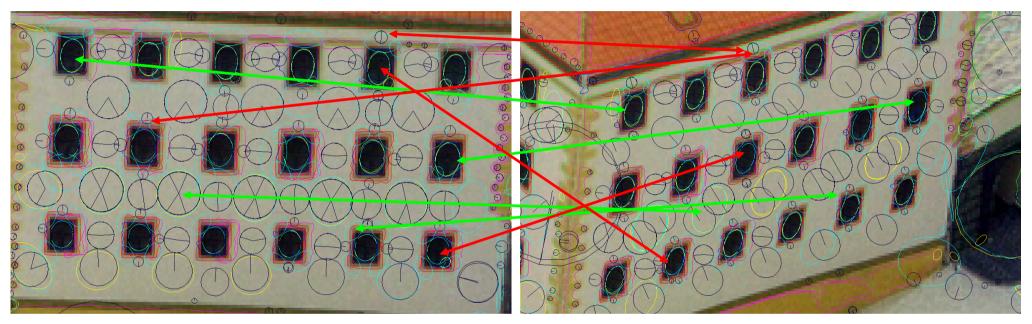
Applications

Minimal problem:


a problem that leads to solving a system of algebraic equations with a finite number of solutions.

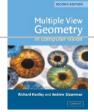
- 1. Problem formulation \rightarrow algebraic equations
- 2. Solve algebraic equations

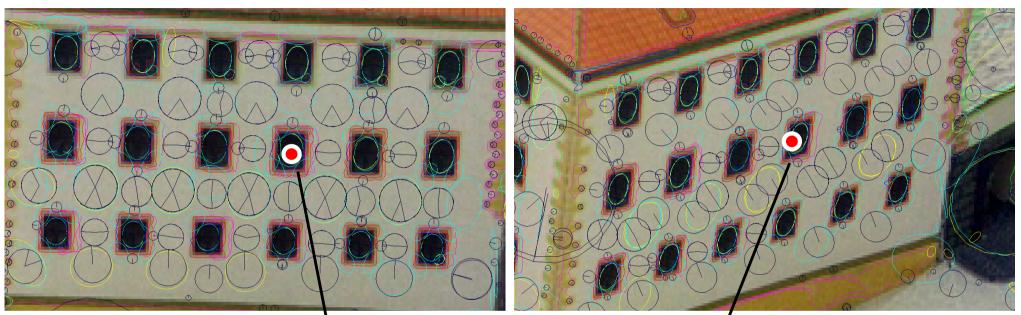
Easy? ... **NO**

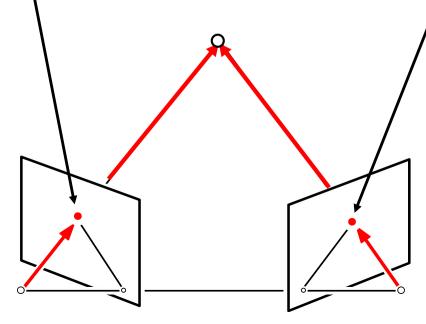

We have to be very fast in computer vision applications!

Why to be fast?

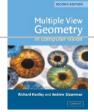
Solvers are used in combinatorial optimization


Image matching

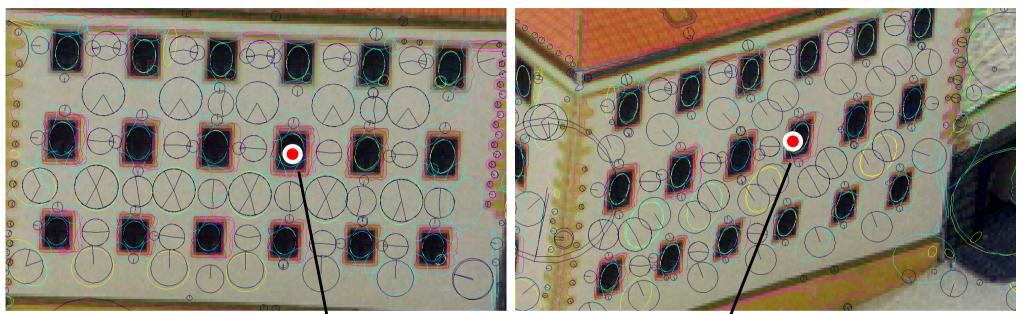

- Similar objects (circles, rectangles) ... tentative matches
- Some are correct, some are wrong
- Optimization task:


Find the largest (large) subset of tentative matches <u>consistent</u> with a <u>valid two view geometry</u>

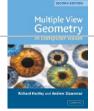
Valid two view geometry



Epipolar constraint



Valid two view geometry

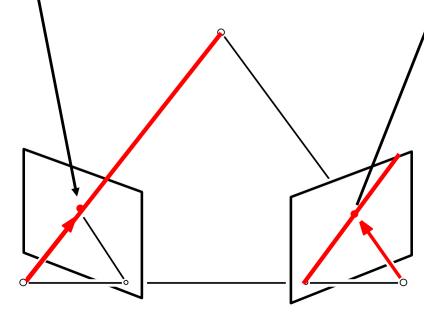


Epipolar constraint

$\mathbf{x}_2^\top \mathbf{F} \mathbf{x}_1 = \mathbf{0}$

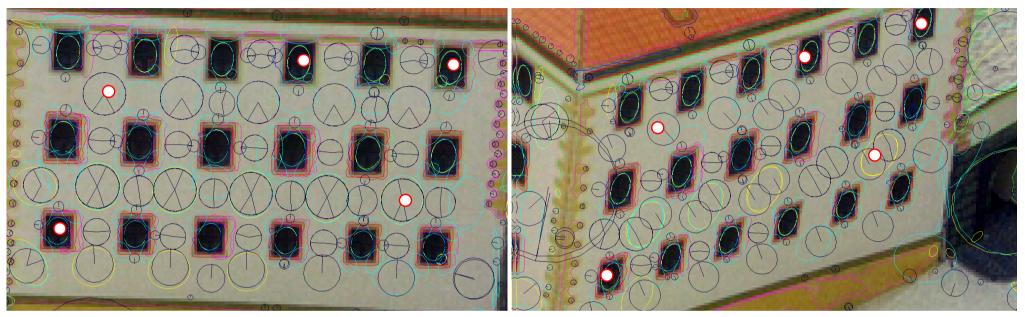
Valid two view geometry

Epipolar constraint


- F can be computed from 5 matches
- The best F is consistent with the largest subset

$$\mathbf{x}_2^{\top} \mathbf{F} \mathbf{x}_1 = \mathbf{0}$$

Consistent two view geometry


Matching constraint

Optimization scheme = RANSAC

Enumerating all subsets replaced by checking only some of them

RANdom SAmpling Consensus

- 1. Generate random 5-tuples of matches
 - 2. Compute F by solving $\mathbf{x_2}^{\top} \mathbf{F} \mathbf{x_1} = \mathbf{0}$
- 3. Count the number of good matches

Return the largest set of good matches

Why to be fast?

• Many samples needed to be sure to find a good sample!

To find a gross-error-free sample with 95% probability we have to try at least the following number of samples:

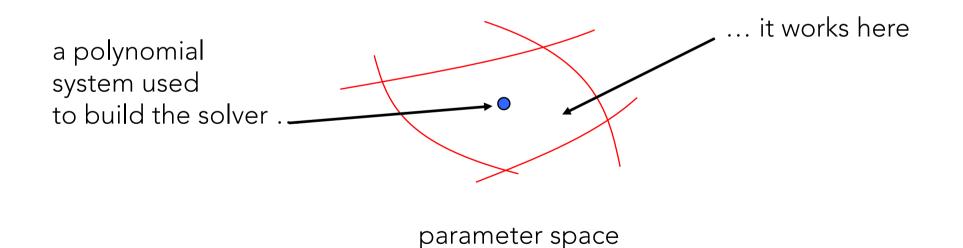
20% 30% 40%50% 70% 15% 2 132 73 32 17 10 4 5916 1871 368 116 46 4 11 $1.75 \cdot 10^{6}$ $2.34 \cdot 10^{5}$ $1.37 \cdot 10^{4}$ 7 382 1827 35 $1.17 \cdot 10^{6}$ $1.17 \cdot 10^{7}$ $4.57 \cdot 10^{4}$ 8 4570 765 50 $2.31 \cdot 10^{10}$ $7.31 \cdot 10^{8}$ $5.64 \cdot 10^{6}$ $1.79 \cdot 10^{5}$ $1.23 \cdot 10^{4}$ 12 215 $2.08 \cdot 10^{15}$ $1.14 \cdot 10^{13}$ $7.73 \cdot 10^{9}$ $4.36 \cdot 10^{7}$ $7.85 \cdot 10^{5}$ 18 1838 $1.35 \cdot 10^{16}$ $2.60 \cdot 10^{12}$ $3.22 \cdot 10^{9}$ $1.33 \cdot 10^{5}$ 30 ∞ ∞ $2.70 \cdot 10^{16}$ $3.29 \cdot 10^{12}$ $4.71 \cdot 10^{6}$ 40 ∞ ∞ ∞

Gross error contamination ratio [%]

Solving time: micro-mili seconds

Sample size

How to be fast?


How to be fast?

- 1. Specialized solving methods
- 2. Assume generic data
- 3. Use tricks, optimize, hard code, ...

Many problems are generic

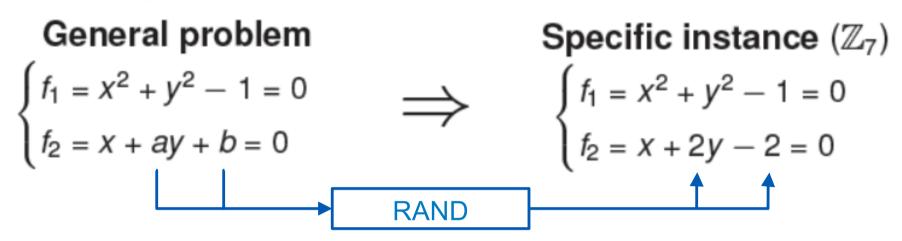
Solvers do not (much) differ from one problem o another.

- → Solver is made out by solving a single concrete system and then used on other systems
- \rightarrow This works around generic solutions

Strategy of fast solving

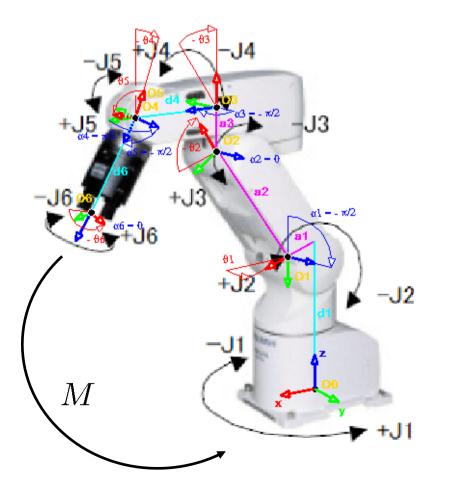
Offline phase (may be slow)

- 1. Fabricate a concrete generic example of a polynomial system (generating 0-dim radial ideal I)
- Analyze the system by a generic method (Macaulay2, FGb, ...) to get the degree, (standard monomial) basis in R/I, ...
- 3. Create an elimination template for constructing a multiplication matrix M_f of multiplication by a suitable polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$ (an unknown) in a finite-dimensional factor ring $A = \mathbb{C}[x_1, \dots, x_n]/I$.
- 4. Implement efficiently in floating points, optimize, test, ... (vary ordering, basis selection, ...)


Strategy of fast solving

Online (must be fast)

- 1. Fill the elimination template to get matrix M_f
- 2. Solve numerically by finding eigenvectors of M_f (or get a univariate poly and use real root bracketing)


Offline: Fabricate a concrete generic example

1. An easy example

Offline: Fabricate a concrete generic example

2. A (not difficult) example (Inverse Kinematic Task in robotics) Given M find c_i , s_i (sin & cos of controlled angles) $M = M_1^0(c_1, s_1) M_2^1(c_2, s_2) M_3^2(c_3, s_3) M_4^3(c_4, s_4) M_5^4(c_5, s_5) M_6^5(c_6, s_6)$

M_i^{i-1}	=	$\left[\begin{array}{c}c_i\\s_i\\0\\0\end{array}\right]$	$egin{array}{c} -s_ip_i \ c_ip_i \ q_i \ 0 \end{array}$	$s_i q_i \ -c_i q_i \ p_i \ 0$	$\left[egin{array}{c} a_ic_i\ a_is_i\ d_i\ 1 \end{array} ight]$
		$c_2^{\hat{2}} +$	$s_1^2 = 1$ $s_2^2 = 1$ $s_3^2 = 1$	$c_{5}^{2} +$	$s_4^2 = 1$ $s_5^2 = 1$ $s_6^2 = 1$

- M must contain a rotation matrix to get a consistent system.
- A rational rotation must be constructed (no difficult)

3. Hard cases exist too

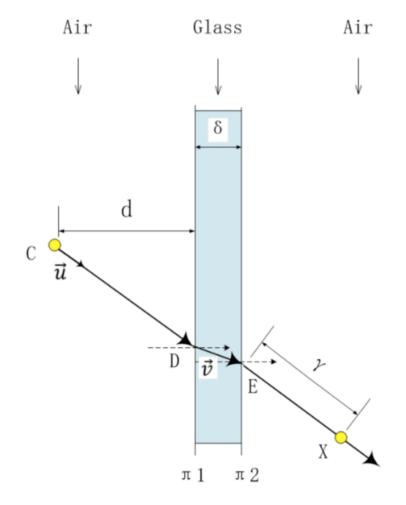
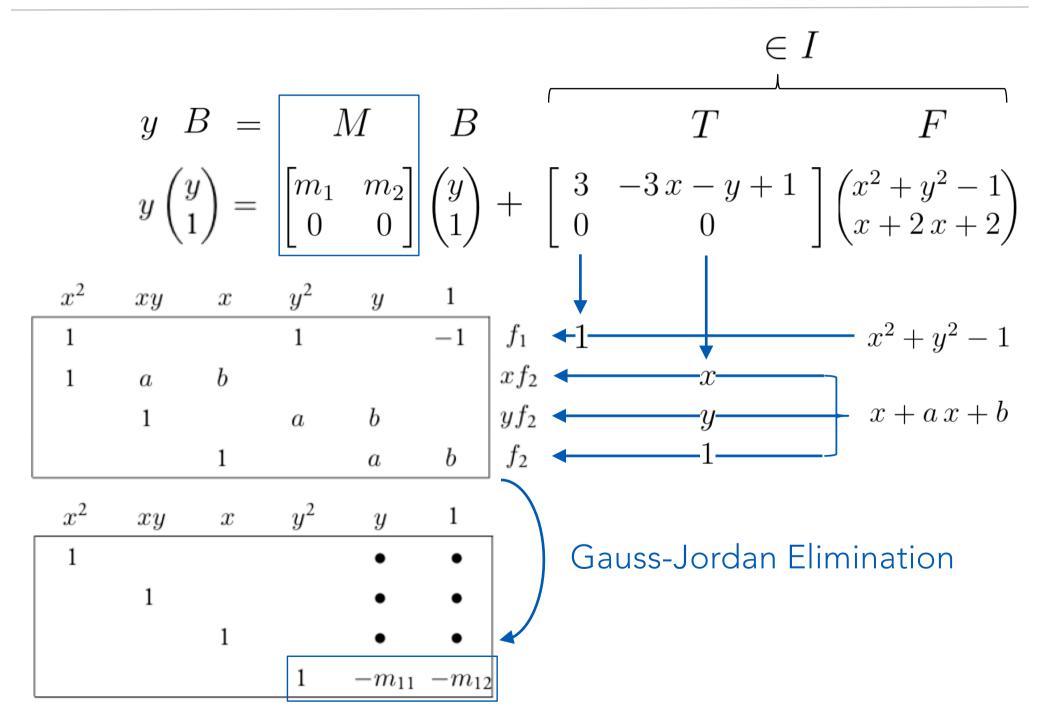


Figure 3.1: Model of the planar glass and projection geometry

A more general parametric systems:

Do we need to find a rational point on a variety?


- Hard?
- When possible/impossible?
- Other options (numerical) if impossible?

Offline: Analyze the system

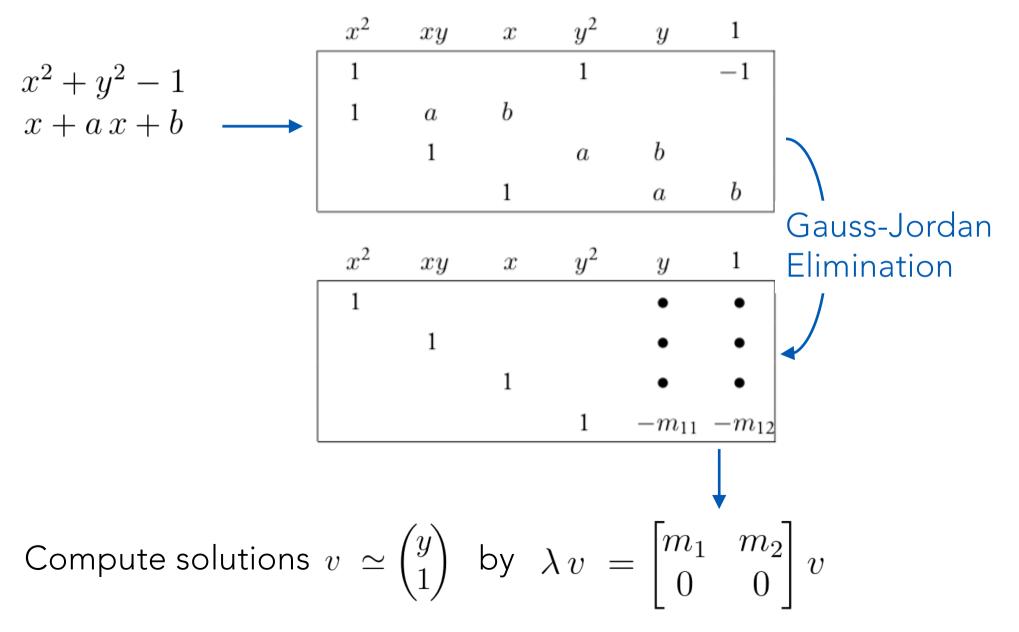
Specific instance (\mathbb{Z}_7)

```
\begin{cases} f_1 = x^2 + y^2 - 1 = 0 \\ f_2 = x + 2y - 2 = 0 \\ -- & \text{Ring} \end{cases} Macaulay2, version 1.12
                    i1 : R = ZZ/7[x,y]
                     -- An instance
                     i2 : F = matrix({\{x^2+y^2-1\}, \{x+2*y-2\}\})
                     i3 : I = ideal(F)
                     -- The dimension and the degree of V(I)
                     i4 : dim(I), degree(I)
                    04 = (0, 2)
                     -- The standard monomial basis of A = R/I
                     i5 : A = R/I
                     i6 : B = basis(A)
                     06 = | v 1 |
```

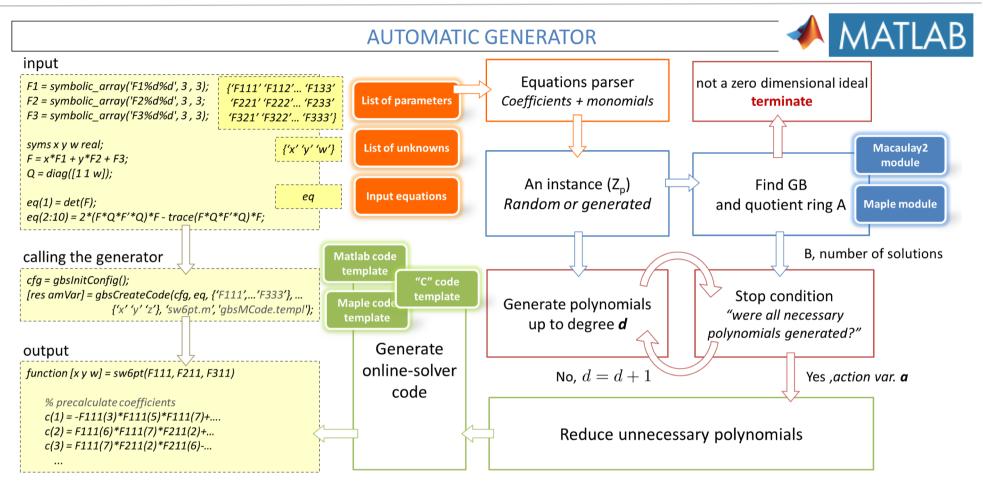
Offline: Create an elimination template

Offline: Create an elimination template

```
Macaulav2
-- Reduce y multiple of B by I
i9 : r = (y*B) \% I
09 = | 3y-2y |
-- Multiplication matrix of y in R/I w.r.t. B
i10 : M = transpose((coefficients(r,Monomials=>B))_1)
010 = \{-1\} \mid 3 - 2 \mid
      \{0\} | 1 0 |
-- Create the template for constructing M from F
-- y*B = M*B + T*F
i12 : T = transpose(transpose(y*B-M*B) // gens(I))
o12 = \{-1\} | 3 - 3x - y + 1 |
      {0} | 0 0
  Extract monomials from columns of T
i14 : m = apply(m, x-apply(x, x->(... (T) ...))
o14 = \{\{1\}, \{1, y, x\}\}
```


Offline: Create an elimination template

// ... does the magic


- Traces Groebner basis construction
- Reduces the template by the Groebner basis of the Syzygy module
- Often produces very efficient templates (no unnecessary rows) but not always
- When can be ``the optimal template" defined and found? (F5?)
- Other parameters important ... e.g. basis in R/I selection

Online: Fill the template, get *M*, eigenvectors

New coefficients a, b

Automatic generator of ``minimal solvers"

- Z Kukelova, M Bujnak, T Pajdla. Automatic Generator of Minimal Problem Solvers. ECCV 2008.
- V Larsson, K Astrom, M Oskarsson.
 Efficient Solvers for Minimal Problems by Syzygy-Based Reduction. CVPR 2017.
- V Larsson, M Oskarsson, K Astrom, A Wallis, Z Kukelova, T Pajdla. Beyond Grobner Bases: Basis Selection for Minimal Solvers. CVPR 2018

Template construction optimization

- Criteria for the best template have not (yet) been clearly defined but
- Efficient templates are small and numerically robust
- R/I basis selection is important (for the strategy described)

- How to choose a good basis?
- Experiments with monomial orderings + more ...

• Only a finitely many different Groebner bases (Groebner fan)

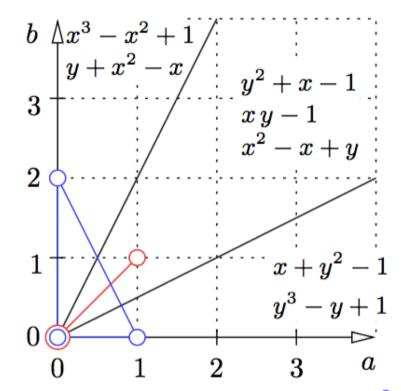


Figure 1. The Gröbner fan of the ideal $I = \langle x + y^2 - 1, xy - 1 \rangle$ consists of three two-dimensional cones. For each cone, there is exactly one reduced Gröbner basis of *I*. All monomial orderings generated by all weight vectors from one cone give the same reduced Gröbner basis of *I*. Hence, there are exactly three different reduced Gröbner bases for *I* over all possible different monomial orderings.

- Generate standard monomial bases for all GB in the GB fan.
- Test them an choose the best (the smallest and stable) basis.
- Go beyond: Use a heuristic to sample other even better bases.

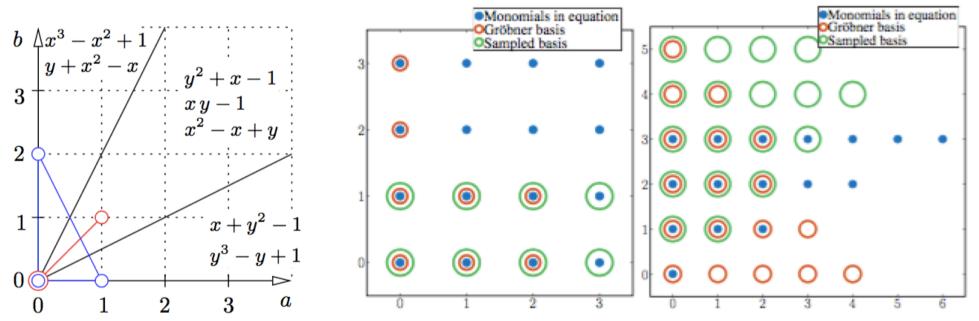


Figure 3. The figure shows the basis monomials for two example problems, namely 8pt rel. pose $F+\lambda$ (left) and 3pt image stitching $f\lambda+R+f\lambda$ (right). Both these problems have two variables, and for both these problems the proposed basis sampling scheme gives significantly smaller template compared to the Gröbner basis vari-

• There are dramatic differences

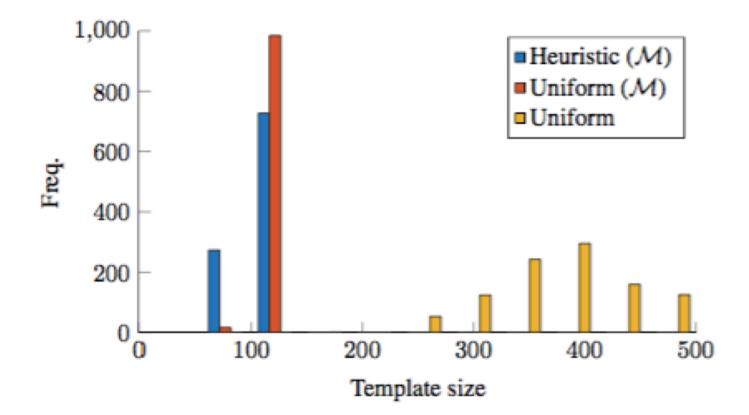


Figure 4. Template size (rows) for 1,000 randomly sampled bases for the P4Pfr formulation from Bujnak *et al.* [7].

Many solvers improved

Problem	Author	Original	[29]	GFan+ [29]	(#GB)	Heuristic+[29]
Rel. pose F+ λ 8pt	Kuang et al. [25]	12×24	11×20	11×20	(10)	7 imes 16
Rel. pose $E+f$ 6pt	Bujnak et al. [6]	21×30	21×30	11 imes 20	(66)	11 imes 20
Rel. pose $f+E+f$ 6pt	Kukelova et al. [26]	31×46	31×50	31×50	(218)	21 imes 40
Rel. pose E+ λ 6pt	Kuang et al. [25]	48×70	34×60	34×60	(846)	14 imes 40
Stitching $f\lambda$ +R+ $f\lambda$ 3pt	Naroditsky et al. [35]	54×77	48×66	48×66	(26)	18 imes 36
Abs. Pose P4Pfr	Bujnak et al. [7]	136 imes 152	140×156	54 imes 70	(1745)	${f 54 imes70}$
Rel. pose λ +E+ λ 6pt	Kukelova et al. [26]	238 imes 290	149×205	-	?	53 imes 115
Rel. pose λ_1 +F+ λ_2 9pt	Kukelova et al. [26]	179×203	165×200	84 imes 117	(6896)	84 imes 117
Rel. pose E+ $f\lambda$ 7pt	Kuang et al. [25]	200 imes 231	181×200	69 imes 90	(3190)	69 × 90
Rel. pose E+ $f\lambda$ 7pt (elim. λ)	-	-	52×71	37×56	(332)	24 imes 43
Rel. pose E+ $f\lambda$ 7pt (elim. $f\lambda$)	Kukelova et al. [27]	51 imes 70	51 imes 70	51 imes 70	(3416)	51 imes 70
Abs. pose quivers	Kuang et al. [22]	372×386	216×258	-	?	81 imes 119
Rel. pose E angle+4pt	Li et al. [32]	270×290	266×329	-	?	183 imes 249
Abs. pose refractive P5P	Haner et al. [17]	280 imes 399	240 imes 324	$\bf 157 \times 246$	(8659)	240 imes 324

Table 1. Size of the elimination templates for some minimal problems. For the relative pose problems unknown radial distortion is denoted with λ and unknown focal length with f, and the position describes which camera it refers to. The table shows the original template size from the author, the template size found using the method from [29] (GRevLex basis), the template size from doing an exhaustive search over Gröbner bases (Section 2.2) and the random sampling approach (Section 3.1). Missing entries are when the Gröbner fan computation took longer than 12 hours.

Minimal Problems in Computer Vision Tomas Pajdla

Czech Technical University in Prague

in collaboration with

Zuzana Kukelova, Martin Bujnak, Jan Heller, Cenek Albl, Tanja Schilling, Di Meng, Pavel Trutman

Andrew Fitzgibbon, Viktor Larsson, Kalle Astrom, Magnus Oskarsson, Kalle Astrom, Alge Wallis, Martin Byrod, Klas Josephson

Joe Kileel, Bernd Sturmfels